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Direct numerical simulation of a turbulent 
flow in a channel having periodic pressure 
gradient 
Yutaka Miyake, Koichi Tsujimoto, and Hideki Beppu 
Department of Mechanical Engineering, Osaka University, Osaka, Japan 

The intent of this paper is to contribute database information for a f low less 
complicated than a backward step f low and less simple than a flat channel flow, 
demonstrating the influence of pressure gradient in an internal f low and serving to 
stimulate the creation of new improved turbulence models. A direct numerical 
simulation (DNS) was conducted for a turbulent channel f low having a periodic 
pressure gradient; i.e., a channel having flat plate walls, a solid one on one side and 
a porous one on the other side, which allows variable strength injection/suction of 
fluid. The Reynolds number based on the mean friction velocity on the two walls 
and the half width of the f low passage is 300. The mean f low field as well as such 
statistical quantities of turbulence as fluctuation velocities, and Reynolds stresses 
are presented, with a discussion of the influence of the periodic pressure gradient. 
The energy budget for the transport equations for the turbulent stresses is also 
included. The momentum balance is given in sections normal to the mean flow. It is 
demonstrated that although the thin layer approximation is valid, the pressure 
gradient effect in this f low is different from that in a boundary-layer flow. 
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database; turbulence models 

Introduction 

Construction of highly reliable turbulence models is an urgent 
and keen problem for computational fluid dynamics of today. To 
this point, validation of many kinds of proposed models and their 
improvement have been conducted mainly using simple canonical 
flows, such as decaying homogeneous turbulent flow, two-dimen- 
sional (2-D) channel flow, etc. Although remarkable progress has 
been achieved, and many turbulent models are implemented in 
computational codes used in engineering, further improvement 
and new models are still needed. Although the work requires 
testing models in complex flows, overly complex flows such as 
backward step flow are not necessarily suitable as reference 
flows, because, for example, a backward step flow includes too 
many flow elements within a small space. In view of this, we 
investigate a channel flow having a periodic pressure gradient in 
this paper. 

Flows having a periodic pressure gradient have attracted the 
attention of various investigators. Many of their studies are 
concerned with both boundary layers in the flow along an 
indented wall (Zeman and Jensen 1987; Hunt et al. 1990) and 
internal flows (Frederick and Hanratty 1988; Patel et al. 1991), 
but the flow we are concerned with is one along a flat plate of a 
2-D channel having a periodic pressure gradient. Some reports of 
experimental investigations of this flow are available (Sano and 
Asako 1991; Sano 1992; Miyake and Nakashima 1993), but no 
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numerical simulations have been presented, other than than the 
previous study by these authors (Kajishima and Miyake 1992). 

A series of studies of this type of flow conducted by the 
present authors includes both experimental (Miyake and 
Nakashima 1993) and numerical approaches (Kajishima and 
Miyake 1992). In the present report, a numerical approach in- 
volving direct numerical simulation (DNS) of a turbulent flow in 
a 2-D flat channel with a periodic streamwise pressure variation 
is presented. The pressure gradient is introduced by assuming 
injection/suction of fluid from one of the walls, which is as- 
sumed to be flat and porous. 

Similar large-scale simulation has been conducted by large- 
6 eddy simulation (LES) using a grid number of 1.22 × 10 , for 

low Reynolds number slightly higher than the present DNS. The 
present simulation is intended to reconfirm the findings of the 
LES in the layer close to the wall in order to establish the 
influence of a varying pressure gradient on the near-wall turbu- 
lence, because in LES, the small-scale structures of turbulence 
and the dissipation rate are less accurate than required for testing 
models because of the subgrid scale models. The flow is expected 
to be capable of incorporating the effects of pressure gradient, 
upstream memory, different time scale of perturbation, etc., but 
not in an overly complicated manner. 

In a boundary-layer flow, the outer region is not significantly 
affected by the change of the flow condition on the wall (Nagano 
et al. 1993). Therefore, it is possible to conduct flow simulation 
parabolically, from one section to the next, consecutively. Then, 
a one-dimensional (l-D) calculation is sufficient for the bound- 
ary-layer flow, even if it has pressure gradient in the flow 
direction. However, in this flow, the flow in the core region, 
which is largely modified by the streamwise pressure gradient (as 
described in the main body of this text), must be sufficiently 
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accurate to obtain the correct wall friction, because the turbulent 
mixing in the core region controls the wall friction. Thus, for this 
flow, a good model of the core region and of the near-wall region 
is needed. Furthermore, for this elliptic-type flow, both the 
models and the numerical schemes must be valid at every point 
in the flow field. That is, a small change in the turbulence 
structure and/or a small error in a limited area can seriously 
degrade the performance of the turbulence models. Therefore, as 
a flow for testing turbulence models, this flow presents a more 
severe challenge than those considered in the past. 

Numerical procedure 

The governing equation is the set of three-dimensional (3-D) 
Navier-Stokes equations. The computational code for this work, 
which is based on a spectral method fundamentally similar to that 
presented by Kim et al. (1987), was written specifically for this 
problem. Kim et al. converted the equations of momentum and 
mass into equations of wall-normal vorticity and wall-normal 
velocity, which are fourth-order differential equations, and mass 
conservation. In this paper, instead of the vorticity equation, 
streamwise and spanwise momentum equations are used. Thus, 
pressure appears explicitly as an unknown. The coordinate sys- 
tem and the computational domain are shown in Figure 1. 

A Cartesian coordinate system is employed, in which x, y, z 
or xi(i = 1, 2, 3)-axis are the streamwise, normal, and spanwise 
directions, respectively, and the velocity components in the re- 
spective directions are denoted by u, v, w or ui(i = 1, 2, 3). The 
computational domain is a rectangular volume with a wall separa- 
tion Hy = 28, a streamwise length H~ = 4~r8, and a spanwise 
width H~ = wS. 

As boundary conditions, periodic conditions are applied in the 
streamwise and spanwise directions. Both top ( y = 2 8 )  and 
bottom (y = 0) walls are flat and are subject to a no-slip condi- 
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Figure I 
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Computat ional  f low field and coordinate system 

tion. The wall is assumed to be porous with injection/suction of 
varying intensity of fluid in order to generate a periodic pressure 
gradient. In this simulation, the normal velocity on the porous 
wall is given by 

sin/2"trx 1 
Vo = - 0 . 5  ~ G ] O)  

The spatial discretization is a Fourier series expansion in x and 
z, and a Chebyshev polynomial expansion in the normal direc- 
tion. Time advancement is done by a semi-implicit method 
(Crank-Nicolson scheme for the viscous term and third order 
Adams-Bashforth scheme for the convective term). 

The Reynolds number R% = ?GS/v is 150 where ~ is the 
mean friction velocity of the two walls; i.e., h~= [(¥, + 
Yt)/2p] 1/2 where ~, and Yt are wall friction stresses on the 
upper and lower walls, respectively. Because the friction velocity 
of the solid wall is smaller than that of the porous one, the 
Reynolds number based on the mean friction velocity (fi~) of the 
solid (lower) wall is 122. 

The grid number is 1 2 8 × 1 2 9 × 6 4  in x, y, z, and the 
resulting grid separations given in Table 1 in which the super- . + . . . . . . .  
script means quantmes nondimenslonahzed by using u, and v, 
the kinematic viscosity. In addition to the above wall units, other 
wall units are defined. Those using h~ and v are denoted with a 
superscript ^, for example, for the quantity A, by ,4 +. 

Notation 

A 

bij  

Cq 

G 
Dq 
G, nz 

Jpij 
JTij 
Jvij 
k 
P, 
R t  
Re, r 
t 

U, V, W 

flatness parameter, 1 - 9A2/8 + 9A3/8 A 2 = 
bijbij, A3 = bijbykbki 
anisotropic tensor, ('ffri"~/k - (2/3)8q 

convection rate, - u k ~ ) , k  
nondimensional pressure coefficient, (p  - p0)/pfi~ 2 
dissipation rate, - 2 v ~  
streamwise and spanwise length of computational 
domain 
pressure diffusion rate, - 8ikp--r'~j + 8juo--r-~ii),k 

turbulent diffusion rate, - ~ , k  

viscous diffusion rate, - v i ~ j . k  k 

turbulent kinetic energy, t~-b'rk/2 
production rate, - ( - - ~ i , k  + u~-refi/.k) 
turbulent Reynolds number, k2/v~ 
Reynolds number, FG$/v 
time 
mean friction velocity of two walls, [(~, + 
¥ / ) / 2 p ]  1/2 

mean friction velocity of lower wall, [~'t/p] 1/2 
velocity components in x, y, and z directions, 
respectively 

x, y, z 

4 ÷ 

Greek 

8 
8ij 
E 
V 
p 
~u, Yt 

¢bij 

Indices 
(~)+ 
(X) 
(A)' 
(A)k 

(a),t 
(a),i 

Reynolds stress 
streamwise, wall-normal, and spanwise directions, 
respectively 
nondimensional distance from wall, fGy/v  

nondimensional pressure gradient, (v/pf~3)(Op/Ox) 
half width of channel 
Kronecker delta 
dissipation rate of turbulent energy 
kinematic viscosity 
density 
wall friction stress on upper and lower wall, 
respectively 
redistribution rate, p' ( u'i, j + u~, i) 

nondimensionalized quantity (,,t) by t~ and v 
ensemble average over z-direction and time 
fluctuating component 
components with respect to turbulent energy trans- 
port equation 
time differentiation 
spatial differentiation with respect to /-coordinate. 
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Figure 2 Variation of friction veloci ty u~ + = u~/0~, nondimen- 
sional pressure coefficient Cp=(p -po ) /pO 2 and nondimen- 
sional pressure gradient 13 = (v/pO3)(~p/~x) along the bottom 
wall  in one pitch 

R e s u l t s  a n d  d i s c u s s i o n  

The following discussion focuses on the flow in the lower half of 
the flow passage; i.e., in the half region of the solid wall side. 

Mean f low 

The streamwise variation of the friction velocity ~+(=  u r / ~ ) ,  
the nondimensional pressure coefficient Cp. = ( p - Po) /  P u~, and 
the pressure gradient 13 = (v/p~3XSp/Ox) over one pitch along 
the bottom wall are given in Figure 2. Each is found to vary 
periodically along the bottom wall. Because there is a constant 
negative value of 13 in a sink flow, it is suggested that relaminar- 
ization occurs at 13 below -0.025 (Spalart 1986). However, in 
the present flow, a strong favorable pressure gradient (13 < 
-0.025) is found in the region 0.06 <~x/H x <~ 0.4, and no 
relaminarization is found anywhere (flow data are shown later in 
the paper). 

One of the most interesting features of the pressure gradient 
effect is the distribution of the mean velocity "~/u~ in sections 
normal to the wall, as ,;hown in Figure 3 where the distance y 
from the wall is nondinaensionalized as y + = y u J v  using the 
local friction velocity u~. In the figure, the straight line is the 
usual log-law given by 

F~/u~ = 2.5 log~ y + +  5.5 (2) 

Experimental findings (Miyake and Nakashima 1993) show that 
T~/u~ is everywhere above the usual log-law line for flat channel 
flow and approaches it more closely in the favorable pressure 
gradient region than in the adverse pressure gradient region. 
From Figure 3, it is seen that the trend of the curves due to 
pressure gradient is consistent with the experiment, but the 
numerical prediction differs from the experimental results in that 
the curves come below the usual log-law line in the favorable 
pressure gradient region (x /H~ = 1/8,  2 /8 ,  3/8).  

Although both the experiments and the present DNS indicate 
that the mean velocity approaches to the usual straight line in the 
favorable pressure gradient region and departs from it in the 

Table 1 Computational condit ions 
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Figure 3 Distribution of mean velocity ~ in vertical sections; 
u, is local friction velocity on the bottom wall 

adverse pressure region, in the sink flow boundary layer of 
constant favorable pressure gradient, the opposite effect was 
reported by Spalart (1986). This implies that the varying pressure 
gradient affects a channel flow in a manner fundamentally differ- 
ent from a uniform pressure gradient. 

Figure 4 shows the isocontour lines of various quantities 
averaged in the spanwise direction, in a vertical section of one 
period. The upper horizontal line is the line of y = ~, and the 
vertical scale has been doubled. Streamwise variations of various 
quantities manifest themselves with a phase lag that is closely 
coincident with the results of previous the LES study (Kajishima 
and Miyake 1992), suggesting that the truncation of small scale 
eddies in LES does not significantly affect the global distribution 
of turbulence quantities. Hence, the discussions given in that 
work are valid also for this DNS, as a whole. Some additional 
discussion concerning isocontour lines is given in the following 
section. 

In the acceleration stage, the earliest response appears in the 
+ 4 increased production rate of turbulent energy/~ = P k / ( ~ / v )  in 

the layer close to the wall, and then the turbulent energy k itself 
follows. /~- begins to be enhanced near the section where 
d13/dx crosses zero from negative to positive ( x / H  x = 0.23) and 
attains its maximum value at the midsection of decelerating 
region. Turbulent energy itself varies in parallel with the produc- 
tion rate, but with a phase delay in the streamwise direction and 
reaches its peak value at the section downstream of that of the 
maximum production rate. 

S t r e a m w i s e ,  x Wall-normal, y Spanwise, z 

Length, H 
Grid number, N 
Grid separation (h/&) 
Grid separat ion ( h ÷ ) 
Mode 
Reynolds number 

4~r8 2~ Ir8 
128 129 64  
h x = 0 .098  h v = 0 .00030  ~ 0 .024  h z = 0 .049  
hx + = 14.7 h~ + = 0 .045  ~ 3 .68  h + = 7 .38  
Four ier  C h e b y s h e v  Four ier  

Re~ = ~-O~/v = 150 
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(b) 

A = l . 5  

A = 0.22 

A = 0.09 

(c) 

A = 0.05 

(d) ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

(e) 

A = 0.02 

(f) 

(g) 

A = 0.015 

........... ii;i~; ........................ ii;;i;; ;iiiiiiii)iiiiiii~ ~ ~iiiiiiii'ii'ii' ~iiiiii~iiii~ !!!! !;[J~'i'|i [ [ ; i ; ~  
A = O.22 

Figure 4 Isocontours of various statistical quantities of turbu- 
lence in a vertical section of lower half region of f low passage: 
(a) = turbulent kinetic energy k÷; (b) = turbulent shear stress 
~r-~/02;  (c) = production rate of turbulent kinetic energy ~k+; 
(d)=  dissipation rate of turbulent kinetic energy /9~; (e )=  
convection rate of turbulent kinetic energy d~ ; (f) = production 
rate / ~  of turbulent shear stress; (g) = turbulent shear stress 

based on ~ priori test by Nagano and Shimada model 
(1993). Increments of neighboring lines are given at the top 
right corners; length scale is the same as in Figure 2 

In the section farther downstream, the shear stress - ~-b-~/~ 
reaches its peak value. This delay in the enhancement of the 
shear stress downstream relative to that of the turbulent energy 
has also been confirmed by experiment (Miyake and Nakashima 
1993). This delay is interpreted as the distance needed for 
quasistreamwise eddies to mature, because a large part of the 
shear stress is generated by the break-up of eddies due to a burst 
that takes place at the tail of the quasistreamwise eddies after 
they have matured. 

The delay in the turbulent energy relative to its production 
rate mentioned above can be explained as follows. The produc- 
tion rate of turbulent energy is 

^ 2 ÷ )j (3) P; ua/v L" J ~x ~ Oy -~x 

The second term in [ ] is negative everywhere in this flow, and 
the first term contributes mainly to the streamwise variation of 
ff~-. Because in the first term representing the contribution of 

normal stress, 0fi/0x is positive in the acceleration region, it 
weakens the production rate there, and vice versa. Because 
OYt/Ox takes its largest value near the middle of the accelerating 
region, the enhancement of the production rate starts there and 
gradually increases in the downstream direction. The production 
rate attains its peak value in the middle of the decelerating 
region, where OYt/ax attains its most negative value. 

The turbulent energy k at a given section reflects the stream- 
wise integration of the production rate /;k + , although losses such 
as that lost to convection C[ ,  which is intensified in the high/;k + 
region, as shown in Figure 4e, must be taken into account. 
Consequently, the intensity variation of k is delayed relative to 
that of /;~-, thus showing the phase lag. On the other hand, the 
shear stress shows no phase lag relative to the production rate, as 
observed in Figure 4b and 4f. 

The shift in the peak points of the ingredients of the turbulent 
energy transport equation shown in Figure 4 depends on the 
Reynolds number, the wave length of the pressure variation, etc., 
as the authors' experiment (Miyake and Nakashima 1993) 
demonstrated. In the experiment, which was at R% =^750, it was 
found that, although the start of enhancement of k was at a 
section in the accelerating region, the location of the peak points 
for k and urb~/~2, was more upstream than in the present DNS. 
This is partly because in the higher Reynolds number flow, the 
size of each event in comparison with the passage dimension 
becomes smaller than in lower Reynolds number case and that 
the wave length in wall unit of the DNS is k~Jv = 1540, while 
in the experiment, it is 9170. However, the qualitative conclusion 
that the local pressure gradient cannot be used as unique parame- 
ter to predict the flow pattern of this type of flow; i.e., consecu- 
tively varying internal flow, is to be noted. Production rate is 
suppressed in the accelerating region and is enhanced in the 
decelerating region, in parallel with the magnitude of local 
pressure gradient. 

0.6 

v 

II 0.4 
+~ 

0.2 

0 100 

9+ = y 

Figure 5 Distributions of dissipation rate of turbulent kinetic 
energy L~ + in cross sections; solid lines = DNS; dotted lines = 
flat channel (Kasagi et al. 1992) 
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The peak of/6~- approaches closer to the wall in the accelera- 
tion region and approaches most closely at the section x / H  x = 

2/8,  where 13 is at its minimum. Inversely, it moves away from 
the wall in the deceleration region. This indicates that the flow is 
pushed toward the wall by the strong positive pressure gradient in 
the accelerating region and is forced away from the wall in 
deceleration region. 

Figure 5 shows the turbulence energy dissipation rate /)~- = 
D k / ( ~ a / v ) .  In this figure, the broken line indicates the flat 
channel case of Re¢ = 150 (Kasagi et al. 1992). The global 
distribution shown in Figure 4(d) suggests that it varies syn- 
chronously with the turbulent kinetic energy. That is, the dissipa- 
tion increases as the kinetic energy does and vice versa. How- 
ever, closer examination reveals some peculiar aspects. 

Except for the layer very close to the wall, the dissipation rate 
is attenuated in the accelerating region and is enhanced in the 
decelerating region, similar to ]6[ behavior. The delay in the 
dissipation response relative to the pressure gradient, however, is 
more than that of ffk +, because the large part of the turbulent 
energy produced in the strong decelerating region is not dissi- 
pated immediately, but rather is brought downstream by the mean 
flow convection. As a result, the turbulent energy to be dissipated 
in the downstream section increases. This corresponds to the fact 
that whereas production is governed by large scale eddies, dissi- 
pation is governed by small ones, and the break-down of eddies 
to successively smaller ones by the cascade mechanism needs 
time. 

In the layer very close to the wall, the response is rapid. That 
is, it varies almost synchronously with the pressure gradient. In 
addition, the complex profile of the curves appears from x / H  x = 

3 / 8  to 5/8 .  The very rigorous requirement of the asymptotic 
behavior of the dissipation rate model may be excessive for this 
flow. 

Furthermore, in Figures 4c and 4d, it is found that the 
streamwise variation of the dissipation rate is smaller than that of 
the production rate. Therefore, it is concluded that the periodic 
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Figure 6 Distr ibutions of turbulent Reynolds number R t =  
k2/(w) in cross sections; solid lines = DNS; dotted lines = flat 
channel (Kasagi et al. 1992) 

pressure gradient has less influence on the small-scale eddies 
than on the large-scale ones, which may explain why LES gives 
reasonable results for this flow, even if the small scale eddies are 
replaced by a primitive model. 
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Figure 7 Distributions of redistribution terms in cross sections: (a) = ¢~ ;  (b) = ¢12; solid lines = DNS; dotted lines = flat channel 
(Kasagi et al. 1992) 
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The most striking difference between this DNS and the flat 
channel case is found in the cross-sectional distribution of turbu- 
lent Reynolds number R t = k 2 / / v E ,  which is shown in Figure 6. 
Because in eddy-viscosity-type models, the turbulent eddy- 
viscosity is usually defined as v t / v  = C ~ f ~ R  t where Cp, f~ are 
model constant and the wall damping function, respectwely, the 
curves shown in the figure are proportional to v t. Obviously, in 
this flow vt, accordingly the strength of turbulent mixing, is 
much weaker than in the flat channel case in the core region of 
the flow passage. The difference in the proportion of wall friction 
on the two walls makes the turbulence property different in the 
region above the buffer layer from the fiat channel case, even if 
the friction velocities are identical. Namely, when the quantities 
are reduced to wall variables, the similarity between the two 
flows are limited within a very thin layer. 

The lowering of v t is mainly due to the decline of k in the 
core region, which is caused by the relative rise in the total 
dissipation rate in one pitch. Namely, the excess turbulent energy 
production in the diverging region is convected downstream by 
the mean flow and is dissipated in the converging region where 
the dissipation rate becomes greater than it should be for the 
production rate there. Therefore, the high production of turbulent 
energy in the diverging region is less effective in enhancing the 
turbulent energy and does not compensate for its reduction in the 
converging region. 

Figure 7 shows examples of cross-sectional profiles of the 
redistribution terms (a) ~b~ and (b) ~b~- 2. The dotted lines again 
indicate the flat channel flow. It should be noted that both ~b~ 
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Figure 8 Budget of transport equation of turbulent kinetic 
energy; (a)= x / H  x = 0; (b)= x / H  x = 2/4; • indicates the resid- 
ual 
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Figure 9 Budget of transport equation of dissipation rate of 
turbulent kinetic energy; ( a ) = x / H x = O ;  ( b ) = X / H x = 2 / 4 ;  
• indicates the residual 

and ¢~-2 in the region above the buffer layer are remarkably 
enhanced in phase with the shear stress I h-r'FI and the production 
rate of shear stress P12. Namely, redistribution terms are en- 
hanced where these terms become stronger than in a flat channel 
flow and are strongly attenuated in the region from midaccelera- 
tion to mid-deceleration sections, indicating that the underlying 
physical phenomenon of redistribution terms are related to the 
generation of turbulent shear stress. The mechanism of the redis- 
tribution phenomenon is interpreted as the flow deflection in- 
duced by the high-pressure spots generated by the quasistream- 
wise eddies around their cores (Iida and Kasagi 1993). The 
above-mentioned distributions of the redistribution terms support 
this interpretation and suggest that enhancement of the qua- 
sistreamwise eddies is crucially important to the near-wall turbu- 
lence, which, in turn, is strongly influenced by the mean pressure 
gradient. 

Budget  o f  Reynolds stress t ransport  equat ion 

In this section, we present examples of the budget of the transport 
equations for Reynolds stress. The budget of the turbulent kinetic 
energy k and its dissipation rate e are shown, because they are 
typical and important quantities in turbulence models. 
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The budget of the turbulent kinetic energy is given in Figure 8 
in which all the quantities are nondimensionalized as wall vari- 
ables using ~ and v. Figure 8a is for the section of the smallest 
mean velocity x / H  x = 0 and Figure 8b, for that of the largest 
mean velocity x / H  x = 2/4.  

Although numerical accuracy in the previous LES (Kajishima 
and Miyake 1992) was not high enough to allow testing of 
turbulence models, and dissipation rate in particular, the present 
DNS is sufficiently accurate, as shown by the residuals of the 
budget given by • in the figures, which are negligibly small at 
every point in each of the sections. 

In the budget of turbulent kinetic energy, the production rate, 
and the dissipation rate are almost in balance locally, as in the 
flat channel flow, but in this particular flow, convection absorbs a 
large part of the excess or deficit of production over dissipation. 
Furthermore, the diffusion term plays a more important role and 
extends farther away from the wall than in the flat channel case. 
The streamwise variation of turbulence is mostly an enhancement 
of diffusion. The turbuhmt energy transported farther away from 
the wall by diffusion is convected downstream by the mean flow. 

Figure 9 shows the budget of the transport equations of 
energy dissipation rate e. in which terms are identical with those 
defined in Mansour et al. (1988); i.e.,~/;+ are production terms 
of dissipation /5+, viscous diffusion qb +, pressure transport/~+, 
turbulent transport Y+, dissipation, and C + convection. The 
nondimensionalization is the same as in Figure 8 and also the 
meaning of the symbol • is the same. It is found that the 
numerical accuracy is sufficient to satisfy the required balance. 

Dissipation I?+ is the major term in the •-transport equation, 
and it is modified seriously by the nonuniform mean flow, but the 
terms $+,  /%, /5 + are quite small at every section and are 
insensitive to the mean flow fluctuation. The production term 
fluctuation from one section to the other is large. 

A typical property of the eddy-viscosity-type turbulence mod- 
els is demonstrated in Figure 4(g), which shows the isocontour 
map of turbulent shea:r stress obtained by an eddy-viscosity 
model of Nagano and Shimada (1993), which gives the eddy- 
viscosity as Yt = C f k2//e where C = 0.09, f, = [1 - 
exp{-  (y +/44)2}][1%V'as//g 3/4exp{ - ~Rt / /55 )1 /2}~ ,  g t 

k 2 / / v • .  In the calculatio:a of Figure 4g, the rate of strain, k and • 
are brought from this DNS. As mentioned before, no phase shift 
appears between the production rate of the turbulent shear stress 
and shear stress itself, unlike the turbulent kinetic energy or the 
normal stresses. 

Comparing Figure 4g with Figure 4a, we find that the model 
gives the distribution of ~b-', which is almost in phase with the 
turbulent kinetic energy. However, Figure 4b of the present DNS 
shows that - ~  is enhanced with a phase delay in the down- 

, , , , , , , , , ] 

~ .  ~ - ~ - - ' - - - . ~  - - - - flat channel _ 

0 10  

Figure  10 Streamwise variat ion of flatness parameter A on 
constant ~'+ surfaces. A = 1 - 9 A 2 / 8 4 - 9 A a / 8 ,  A 2 = b i j b i j ,  Aa = 
b i i  b ik bk i ,  b i j  = (--~i-~/  k - (2/3)~ ij 
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Figure  11 Momentum balance in streamwise direction; (a)= 
x / H  x = 1/4; (b) = x / H  x = 3/4; - - ;  - d p / d , ~ / ( D 3 / v ) ,  
- - ;  -- v(OZ-O / i ) X  2 + 02~/0y2)/(Dra/v), - . . . .  ; -- (O-ff-U/Ox 4- 
o-ff-~/oy) / (  o~ / v), ; - oiT-d / o x  / (  O~ / v), ; 
- oi?7/o v / (  O~ / v) 

stream direction relative to k. This discrepancy is caused by the 
fact that eddy-viscosity-type turbulence models calculate both 
normal and shear stresses using a single relationship between the 
eddy-viscosity and the rate of strain. It demonstrates that the 
memory effect, which is, in principle, incorporated in the trans- 
port equation of k and •, is not adequately taken into account, as 
is inferred from the mechanism of the phase delay in the produc- 
tion of the shear stress. In this regard, the eddy-viscosity-type 
models may have an inherent drawback for flows having pressure 
variation in the streamwise direction. 
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In many turbulence models, the flatness parameter (Lumley 
1978) A = 1 -  9A2/8  + 9A3/8,  where A 2 and A 3 are A 2 = 
bijbij , and A 3 = bijbjkbki, bij = ( - ~ ) / k  - (2/3)~i./, is often 
used to incorporate the characteristics of turbulence. Figure 10 
shows its distribution along a constant y+ line. Again, the 
horizontal broken lines are used to indicate the flat channel flow. 
A is a measure of the three-dimensionality of turbulence and 
vanishes as the turbulence becomes 2-D. In the decelerating 
region, where the activity of streamwise eddies becomes en- 
hanced, it is expected intuitively that the three-dimensionality 
will also be enhanced, but Figure 10 suggests that the opposite is 
true. 

Budget of  momentum equation 

This section presents a budget of the momentum equation. Figure 
11 shows examples of the budgets for the streamwise momentum 
at the sections x / H  x = 1 / 4  and 3 / 4 .  In the region above buffer 
layer, or at ~+>~ 30, the pressure gradient and convection terms 
are nearly in balance, and the other two terms, representing the 
contributions of the viscous force and the turbulent shear stress, 
are small. The pressure profile reflects the curvature of the mean 
streamlines and becomes more uniform close to the wall. The 
pressure gradient in the layer close to the wall should be exact if 
we want to have an accurate prediction by simulation. Therefore, 
the turbulent shear stress plays an important role in determining 
the whole flow field, although it is small in magnitude as 
compared with the other two terms in the core region, because 
the difference between the two leading terms is mainly covered 
by turbulent shear stress. In addition, the error in one location 
affects the accuracy of the whole flow field, because the internal 
flow now under consideration is inherently elliptic. In the bound- 
ary-layer flow, this problem does not appear, because the pres- 
sure gradient is given and is not an unknown to be determined 
simultaneously. Therefore, turbulence models must be more ac- 
curate in the internal flow than in the boundary-layer flow or in 
flows that are homogeneous in the main flow direction. In this 
sense, this flow is a good case to use in investigating the 
performance of turbulence models. 

As is shown in Figure 11, the contribution of the turbulent 

normal stress Ou'2/Ox to the momentum balance is quite small, 
meaning that for this flow, the thin-layer approximation in which 
the model for the turbulent stresses is required only for the shear 
stress and not for the normal stresses is valid. Usually, flows 
allowing the thin-layer approximation conceal the inherent draw- 
back of low-order models not being able to predict correctly the 
anisotropy of turbulent normal stresses. 

Conclusion 

In this paper, a DNS of a channel flow having a periodic pressure 
gradient in the flow direction is presented. The conclusions are as 
follows: 
(1) In this channel flow having a streamwise periodic pressure 

variation, statistical quantities of turbulence such as turbulent 
kinetic energy, shear stress, ingredient terms in the transport 
equations of kinetic energy, and dissipation rate vary with a 
spatial phase lag relative to one another, representing their 
mutual dependence. 

(2) The periodic pressure gradient affects the turbulence struc- 
ture, but the magnitude of its local gradient cannot be 
considered a unique governing factor to express the modifica- 

tion of the structure. The variation on the wall diffuses 
outward away from the wall and is convected downstream at 
the same time, thus constructing a complex laminating struc- 
ture of turbulence in cross section. 

(3) In this flow, the turbulent eddy Reynolds number R t = k 2 / v e  
is much smaller than in a flat channel flow. This reduces the 
wall shear stress on the lower flat plate to a value smaller 
than that in a flat channel flow. This elliptic property that the 
pressure is not specified but must be determined as a part of 
the simulation differentiates this flow from boundary-layer 
flows having pressure gradient. 

(4) An inherent drawback of the alignment of tensors of turbu- 
lent stress and strain rate is suggested. 

(5) The momentum balance shows that although the thin layer 
approximation is valid for this flow, an error in the prediction 
of the shear stress in the core region may aggravate the 
accuracy of prediction of the whole flow. 
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